Quantitative magnetic resonance imaging of human brain perfusion at 1.5 T using steady-state inversion of arterial water.
نویسندگان
چکیده
We report our experience using a noninvasive magnetic resonance technique for quantitative imaging of human brain perfusion at 1.5 T. This technique uses magnetically inverted arterial water as a freely diffusible blood flow tracer. A perfusion image is calculated from magnetic resonance images acquired with and without arterial blood inversion and from an image of the apparent spin-lattice relaxation time. Single-slice perfusion maps were obtained from nine volunteers with approximately 1 x 2 x 5-mm resolution in an acquisition time of 15 min. Analysis yielded average perfusion rates of 93 +/- 16 ml.100 g-1.min-1 for gray matter, 38 +/- 10 ml.100 g-1.min-1 for white matter, and 52 +/- 8 ml.100 g-1.min-1 for whole brain. Significant changes in perfusion were observed during hyperventilation and breath holding. This technique may be used for quantitative measurement of perfusion in human brain without the risks and expense of methods which use exogenous tracers.
منابع مشابه
Challenges for non-invasive brain perfusion quantification using arterial spin labeling.
Arterial Spin Labeling (ASL) sequences for perfusion Magnetic Resonance Imaging (MRI) have recently become available to be used in the clinical practice, offering a completely non-invasive technique for the quantitative evaluation of brain perfusion. Despite its great potential, ASL perfusion imaging still presents important methodological challenges before its incorporation in routine protocol...
متن کاملFeasibility of ultrahigh field (7 Tesla) human cardiovascular magnetic resonance imaging to assess cardiac volumes and mass validated against 1.5 T and 3T field strengths
Introduction Ultrahigh (7T) cardiovascular magnetic resonance imaging (CMR) is an emerging field of clinical research because theoretically higher signal to noise offers potential benefits for imaging coronaries, perfusion and spectroscopy. We report the first comparison of CMR at 1.5 T, 3 T and 7 T field strengths using steady state free precession (SSFP) and fast low angle shot (FLASH) cine s...
متن کاملComparison of Two Quantitative Susceptibility Mapping Measurement Methods Used For Anatomical Localization of the Iron-Incorporated Deep Brain Nuclei
Introduction Quantitative susceptibility mapping (QSM) is a new contrast mechanism in magnetic resonance imaging (MRI). The images produced by the QSM enable researchers and clinicians to easily localize specific structures of the brain, such as deep brain nuclei. These nuclei are targets in many clinical applications and therefore their easy localization is a must. In this study, we aimed to i...
متن کاملA protocol for assessing subtraction errors of arterial spin-tagging perfusion techniques in human brain.
A protocol for assessing signal contributions from static tissue (subtraction errors) in perfusion images acquired with arterial spin-labeling (ASL) techniques in human brain is proposed. The method exploits the reduction of blood T(1) caused by the clinically available paramagnetic contrast agent, gadopentetate dimeglumine (Gd-DTPA). The protocol is demonstrated clinically with multislice FAIR...
متن کاملAn Efficient Framework for Accurate Arterial Input Selection in DSC-MRI of Glioma Brain Tumors
Introduction: Automatic arterial input function (AIF) selection has an essential role in quantification of cerebral perfusion parameters. The purpose of this study is to develop an optimal automatic method for AIF determination in dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) of glioma brain tumors by using a new preprocessing method.Material and Methods: For this study, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 91 1 شماره
صفحات -
تاریخ انتشار 1994